Oligohis-tags: mechanisms of binding to Ni2+-NTA surfaces.

نویسندگان

  • Steven Knecht
  • Daniel Ricklin
  • Alex N Eberle
  • Beat Ernst
چکیده

Since immobilized metal ion affinity chromatography (IMAC) was first reported, several modifications have been developed. Among them, Ni(2+) immobilized by chelation with nitrilotriacetic acid (NTA) bound to a solid support has become the most common method for the purification of proteins carrying either a C- or N-terminal histidine (His) tag. Despite its broad application in protein purification, only little is known about the binding properties of the His-tag, and therefore almost no thermodynamic and kinetic data are available. In this study, we investigated the binding mechanism of His-tags to Ni(2+)-NTA. Different series of oligohistidines and mixed oligohistidines/oligoalanines were synthesized using automated solid-phase peptide synthesis (SPPS). Binding to Ni(2+)-NTA was analyzed both qualitatively and quantitatively with surface plasmon resonance (SPR) using commercially available NTA sensor chips from Biacore. The hexahistidine tag shows an apparent equilibrium dissociation constant (K(D)) of 14 +/- 1 nM and thus the highest affinity of the peptides synthesized in this study. Furthermore, we could demonstrate that two His separated by either one or four residues are the preferred binding motifs within hexahis tag. Finally, elongation of these referred motifs decreased affinity, probably due to increased entropy costs upon binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip.

While BIACORE instruments are routinely used for kinetic measurements and for the determination of binding constants, the immobilization of a ligand onto the sensor chip surface has to be individually optimized for every system. We show here that the histidine (His) tag, routinely used in protein purification and in detection is an ideal tag for immobilization, despite the intrinsically low aff...

متن کامل

Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags

We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magni...

متن کامل

Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ni-nitrilotriacetic acid surfaces.

There is a particular need in protein analysis and purification for specific, functional, and generic methods of protein immobilization on solid supports. Here we describe a double-hexahistidine (His6) tag sequence, comprising two hexahistidines separated by an 11-amino acid spacer, which shows at least 1 order of magnitude stronger binding to Ni-NTA-modified surfaces than a conventional single...

متن کامل

Effect of chelating agents on hydrogenase in Azotobacter chroococcum. Evidence that nickel is required for hydrogenase synthesis.

The chelating agents EDTA, o-phenanthroline, nitrilotriacetic acid (NTA), ethylenediamine-bis(o-hydroxyphenylacetic acid) (EDDA) or dimethylglyoxime prevented the expression of hydrogenase activity in batch cultures of nitrogen-fixing Azotobacter chroococcum, but did not inhibit preformed enzyme. The inhibition was reversed either by adding a mixture of trace elements (Cu2+, Mn2+, Zn2+, Co2+) o...

متن کامل

Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates.

Structural and mechanistic characterization of proteins by fluorescence resonance energy transfer (FRET)1,2 requires the ability to incorporate fluorescent probes at specific, defined sites.2 For proteins that do not contain cysteine residues, site-specific fluorescent labeling can be accomplished by use of site-directed mutagenesis to introduce a cysteine residue at the site of interest, follo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular recognition : JMR

دوره 22 4  شماره 

صفحات  -

تاریخ انتشار 2009